648 research outputs found

    Higgs bosons near 125 GeV in the NMSSM with constraints at the GUT scale

    Get PDF
    We study the NMSSM with universal Susy breaking terms (besides the Higgs sector) at the GUT scale. Within this constrained parameter space, it is not difficult to find a Higgs boson with a mass of about 125 GeV and an enhanced cross section in the diphoton channel. An additional lighter Higgs boson with reduced couplings and a mass <123 GeV is potentially observable at the LHC. The NMSSM-specific Yukawa couplings lambda and kappa are relatively large and tan(beta) is small, such that lambda, kappa and the top Yukawa coupling are of order 1 at the GUT scale. The lightest stop can be as light as 105 GeV, and the fine-tuning is modest. WMAP constraints can be satisfied by a dominantly higgsino-like LSP with substantial bino, wino and singlino admixtures and a mass of ~60-90 GeV, which would potentially be detectable by XENON100.Comment: 20 pages, 14 figure

    Exact Cross Sections for the Neutralino WIMP Pair-Annihilation

    Get PDF
    We derive a full set of exact, analytic expressions for the annihilation of the lightest neutralino pairs into all two-body tree-level final states in the framework of minimal supersymmetry. We make no simplifying assumptions about the neutralino nor about sfermion masses and mixings other than the absence of explicit CP--violating terms. The expressions should be particularly useful in computing the neutralino WIMP relic abundance without the usual approximation of partial wave expansion.Comment: LaTeX, 46 pages, no figures. Several minor typographical errors correcte

    Upper and Lower Limits on Neutralino WIMP Mass and Spin--Independent Scattering Cross Section, and Impact of New (g-2)_{mu} Measurement

    Get PDF
    We derive the allowed ranges of the spin--independent interaction cross section \sigsip for the elastic scattering of neutralinos on proton for wide ranges of parameters of the general Minimal Supersymmetric Standard Model. We investigate the effects of the lower limits on Higgs and superpartner masses from colliders, as well as the impact of constraints from \bsgamma and the new measurement of \gmtwo on the upper and lower limits on \sigsip. We further explore the impact of the neutralino relic density, including coannihilation, and of theoretical assumptions about the largest allowed values of the supersymmetric parameters. For ÎŒ>0\mu>0, requiring the latter to lie below 1\tev leads to \sigsip\gsim 10^{-11}\pb at \mchi\sim100\gev and \sigsip\gsim 10^{-8}\pb at \mchi\sim1\tev. When the supersymmetric parameters are allowed above 1\tev, for 440\gev \lsim \mchi\lsim 1020 \gev we derive a {\em parameter--independent lower limit} of \sigsip \gsim 2\times 10^{-12}\pb. (No similar lower limits can be set for ÎŒ<0\mu<0 nor for 1020\gev\lsim\mchi\lsim2.6\tev.) Requiring \abundchi<0.3 implies a {\em parameter--independent upper limit} \mchi\lsim2.6\tev. The new \epem--based measurement of (g−2)ÎŒ(g-2)_{\mu} restricts \mchi\lsim 350\gev at 1σ1 \sigma CL and \mchi\lsim515\gev at 2σ2 \sigma CL, and implies ÎŒ>0\mu>0. The largest allowed values of \sigsip have already become accessible to recent experimental searches.Comment: LaTeX, 17 pages, 9 eps figures. Version to appear in JHE

    Defect Detection in Bonded Structures Using the Reverberant Wavefield

    Get PDF
    With the increasing use of adhesives in the automotive, aerospace, and manufacturing industries, there is a growing interest in developing nondestructive methods for locating defects in adhesive bonds. While conventional techniques which utilize ultrasonic waves and Lamb waves are likely candidates for obtaining high resolution images of defects, these methods may not be practical for assembly line applications where the time required to scan the bonds and the access to the bonds are often limited. The objective of this work is to develop an approach for detecting defects in bonds that requires only a limited number of measurements of the reverberant acoustic wavefield (i.e., waves that are multiply scattered off the boundaries of the structure) made over a band of frequencies

    Gravitino Dark Matter in the CMSSM and Implications for Leptogenesis and the LHC

    Full text link
    In the framework of the CMSSM we study the gravitino as the lightest supersymmetric particle and the dominant component of cold dark matter in the Universe. We include both a thermal contribution to its relic abundance from scatterings in the plasma and a non--thermal one from neutralino or stau decays after freeze--out. In general both contributions can be important, although in different regions of the parameter space. We further include constraints from BBN on electromagnetic and hadronic showers, from the CMB blackbody spectrum and from collider and non--collider SUSY searches. The region where the neutralino is the next--to--lightest superpartner is severely constrained by a conservative bound from excessive electromagnetic showers and probably basically excluded by the bound from hadronic showers, while the stau case remains mostly allowed. In both regions the constraint from CMB is often important or even dominant. In the stau case, for the assumed reasonable ranges of soft SUSY breaking parameters, we find regions where the gravitino abundance is in agreement with the range inferred from CMB studies, provided that, in many cases, a reheating temperature \treh is large, \treh\sim10^{9}\gev. On the other side, we find an upper bound \treh\lsim 5\times 10^{9}\gev. Less conservative bounds from BBN or an improvement in measuring the CMB spectrum would provide a dramatic squeeze on the whole scenario, in particular it would strongly disfavor the largest values of \treh\sim 10^{9}\gev. The regions favored by the gravitino dark matter scenario are very different from standard regions corresponding to the neutralino dark matter, and will be partly probed at the LHC.Comment: JHEP version, several improvements and update

    Continuum limit of proton decay matrix elements in quenched lattice QCD

    Get PDF
    We present a lattice QCD calculation of the parameters \alpha and \beta which are necessary in the theoretical estimation of the proton lifetime in grand unified theories (GUTs) using chiral lagrangian approach. The simulation is carried out using the Wilson quark action at three gauge coupling constants in the quenched approximation. We obtain |\alpha(2GeV)|=0.0091(08)(^{+10}_{-19})GeV^3 and |\beta(2GeV)|=0.0098(08)(^{+10}_{-20})GeV^3 in the continuum limit where the first error is statistical and the second one is due to scale setting.Comment: 3 pages, 2 figures, talk presented at Lattice2003(matrix
    • 

    corecore